

Absolute Maximum Ra**q**en-US

Electrical Characteristics T_{vj} =25°C, unless otherwise noted

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
OFF			-			·I
Collector Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0V, I_C = 1mA$	1350			V
Zero Gate Voltage Collector Current	I _{CES}	V _{CE} = 1350V, V _{GE} = 0V			1	mA
Gate Emitter Leakage Current	I _{GES}	$V_{CE} = 0V, V_{GE} = 25V$			500	nA
Integrated Gate Resistor	R _{G(int)}	f = 1MHz, open Collector		5.3		
ON						
Gate Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 30$ mA	5.0	6.5	8.0	V
Collector Emitter Saturation Voltage	V _{CE(SAT)}	$V_{GE} = 15V, I_C = 30A, T_{vj} = 25$		1.80	2.20	V
		$V_{GE} = 15V, I_C = 30A, T_{vj} = 125$		2.12		
		$V_{GE} = 15V, I_C = 30A, T_{vj} = 175$		2.35		
Diode Forward Voltage	V _{FM}	$I_F = 30A, T_{vj} = 25$		2.37		V
		$I_F = 30A, T_{vj} = 125$		2.61		
		$I_F = 30A, T_{vj} = 175$		2.78		
DYNAMIC						
Input Capacitance	C _{IES}	V _{CE} = 30V,		3675		pF
Output Capacitance	C _{OES}	$V_{GE} = 0V$		57		
Reverse Transfer Capacitance	C _{RES}	f = 1MHz		44		
Total Gate Charge	Qg			166	249	nC
Gate-Emitter Charge	Q _{ge}	$V_{CC} = 600 \text{V}, I_{C} = 30 \text{A}$ $V_{GF} = 15 \text{V}$		23	34	
Gate-Collector Charge	Q _{gc}	v GE - 10 v		71	106	

Reverse Conducting Field Stop Trench IGBT

Electrical Characteristics $T_{\nu j}$ =25°C, unless otherwise noted

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
SWITCHING (Note 2)	,		1	1		
Turn						

Fig. 1 IGBT Output Characteristics

Fig. 2 IGBT Output Characteristics

Fig. 3 IGBT Saturation Voltage vs. Junction Temperature Fig. 4 IGBT Threshold Voltage vs. Junction Temperature

Fig. 5 IGBT Transfer Characteristic

Fig. 6 IGBT Capacitance Characteristics

Fig. 7 Diode Conduction Characteristics

Fig. 8 Diode Forward Voltage vs. Junction Temperature

Fig. 13 Gate Charge Characteristics

Fig. 14 Transient Thermal Impedance

Fig. 15 Power Dissipation vs. Case Temperature

Fig. 16 Collector Current vs. Case Temperature

Fig. 17 SOA

Fig. 18 RBSOA

Fig. 19 Load Current vs. Frequency

Fig. 20 Load Current vs. Frequency

TO-247 MECHANICAL DATA

Disclaimer

TRinno technology reserves the right to make changes without notice to products herein to improve reliability, performance, or design. The information given in this document is believed to be accurate and reliable. However, it shall in no event be regarded as a guarantee of conditions and characteristics. With respect to any information regarding the application of the device, TRinno technology hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of patent rights of any third party.